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Abstract. The geography of changes in the fluxes of heat, carbon, fresh water and other tracers at the sea surface are highly

uncertain and are critical to our understanding of climate change and its impacts. We present a state estimation framework

wherein the relative roles of ocean circulation, boundary fluxes and mixing, which describe the evolving state of water masses,

can be balanced. In this framework, we define a discrete set of ocean water masses distinguished by their geographical and

thermodynamic/chemical properties for specific time periods. Ocean circulation then moves these water masses in geographic5

space. In phase space, geographically adjacent water masses are able to mix together, representing a convergence, and air-

sea property fluxes move the water masses over time. We define an optimisation problem whose solution is constrained by the

physically permissible bounds of changes in ocean circulation, air-sea fluxes and mixing. As a proof of concept implementation,

we use data from a historical numerical climate model simulation with a closed heat and salinity budget. An inverse model

solution is found for the evolution of temperature and salinity consistent with ‘true’ air-sea heat and fresh water fluxes which10

are introduced as model priors. When a constant bias is introduced to the prior fluxes, the inverse model finds a solution

closer to the true fluxes. This framework, which we call the Optimal Transformation Method, represents a modular, relatively

computationally cost effective, open source and transparent state estimation tool that complements existing approaches.

1 Introduction

As the climate warms, the ocean acts as a giant reservoir, absorbing excess heat (Cheng et al., 2022) and exchanging vast15

amounts of biologically critical gasses (Friedlingstein et al., 2022). Accurately projecting future climate change hinges on a

deeper understanding of this exchange of properties at the sea surface, and the subsequent ocean response via mixing and

circulation. estimates of past changes in air-sea exchange have large uncertainties, hampering efforts to accurately model them

. However, there is broad disagreement between individual atmospheric reanalysis products on the trends in air-sea heat fluxes

since the 1970s, particularly outside the equatorial Pacific (Cheng et al., 2022; Friedlingstein et al., 2022; Chaudhuri et al.,20

2013; Bentamy et al., 2017), and these trends in air-sea heat fluxes do not correspond with in-situ observations of the change in

ocean temperatures over the same period (e.g., Valdivieso et al. (2017)). The same is true for air-sea freshwater flux products,

which can deviate from one another and from observations of ocean salinity change significantly (Grist et al., 2016). Therefore,
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new techniques are needed to translate observations of the changes in distribution of ocean properties into estimates of the rates

of air-sea exchange, mixing and circulation.25

Changes in the concentration of key oceanic properties such as temperature, salinity, oxygen and carbon can be directly

measured. From these observations, air-sea fluxes can be inferred by fitting a physical model of the ocean. This is called

‘inverse modelling’ or ‘state estimation’ (Wunsch, 2006). A number of common approaches have been employed in the past to

produce oceanic state estimates, including hindcasts, Four Dimensional Variational Assimilation (4DVAR), Green’s Functions

and water mass based methods.30

Hindcasts are derived by taking a forward marching numerical model of the ocean which is initialised with our best guess

of the initial distribution of ocean properties, and forced at the sea surface by observational estimates of the atmospheric

state, including wind, speeds, air, temperature, and humidity. This yields a physically consistent estimate of the state of the

ocean over a given time. With careful consideration of model drift, hindcasts have been used to produce accurate descriptions

(or ‘state estimates’) of recent ocean temperature changes, and therefore heat fluxes from hindcasts have been interpreted as35

providing plausible descriptions of recent changes (Drijfhout et al., 2014; Huguenin et al., 2022). However, such hindcasts do

not typically describe other tracers such as salinity accurately without surface salinity restoring (Griffies et al., 2009).

Four Dimensional Variational Assimilation (Wunsch and Heimbach, 2007, 4DVar, also described as the "adjoint method"[)

is a more sophisticated extension to hindcasts where, during a model run, the state of the model is differentiated with respect to

initial and boundary conditions. Through iteration, boundary and initial conditions are adjusted (in effect systematically tuned)40

to minimise the least squares difference between the model and observations, leading to as physically consistent a model state

as is feasible from which plausible air-sea fluxes result. 4DVar is, however, computationally expensive, meaning simulations

typically focus on the very recent past. For instance, the latest data product from the Estimating the Circulation and Climate of

the Ocean (ECCO) project covers the period 1992-2017 (Forget et al., 2015). In addition, the state estimate is closely tied to

the specific numerical schemes of the model used. For example, if the model’s resolution and advection scheme cannot capture45

a boundary current accurately, then no change to model boundary and initial conditions can change that.

The state estimation approach we propose here is not intended to be a competitor to 4DVar but rather an alternative approach

with distinct use cases. The water mass based method we propose is rooted in both Green’s Function and water mass theory,

both of which we will review briefly in the context of state estimation.

A common approach to ocean state estimation, particularly in terms of of ocean tracers, is to consider every point in the ocean50

at time t, as being a mixture of contributions from other regions of the ocean at previous times given by a ‘Green’s Function’

(GF; Haine and Hall, 2002). In its pure form the GF provides a complete description of all aspects of ocean circulation and

mixing, but in practise this is too high-dimensional to be feasible (a GF linking each point in space and time to each other

point in space and would be 8 dimensional). That said, GF-based methods have been put to practical use by assuming ocean

circulation is steady, and by considering only the connection between a limited number of surface patches and interior ocean55

points (Khatiwala et al., 2009; Zanna et al., 2019).

In practise, a GF is inversely fit to a set of observational estimates of both surface and interior concentrations or by directly

calculating the GF-based on a steady numerical model. An adjacent approach is to directly fit a so called ‘transport matrix’
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(Khatiwala, 2007). GF and transport matrix methods have been used to infer transient changes in the air-sea fluxes of properties

(such as anthropogenic carbon; Mikaloff Fletcher et al., 2006; Khatiwala et al., 2009), as well as to infer long-term changes in60

ocean properties (such as ocean heat content; Zanna et al., 2019; Newsom et al., 2020). In addition to steady state assumptions,

implicit in these approaches is the assumption that the air-sea exchange of properties is proportional to the anomaly of that

property at the sea surface. These assumptions can lead to substantial errors and restrict the range of variables that can be

described (Wu and Gregory, 2022). We aim to develop a method that does not rely on these assumptions.

Water mass based methods are rooted in the fact that only sources and sinks of properties at the sea surface and mixing65

can change the underlying volumetric distribution of water masses in terms of their properties (Groeskamp et al., 2019). For

instance, adiabatic ocean circulation cannot directly change the volume of water that is warmer than a given value. Traditional

box inverse methods (Wunsch, 1978) and their extensions (such as the tracer contour method Zika et al., 2009) effectively

use a water mass approach since properties are conserved within isopycnal layers or along temperature/salinity iso-contours

on isopycnals. More recently, the unique proterties of water mass transformation have been exploited with the thermohaline70

inverse method (THIM). In THIM, Groeskamp et al. (2014b) frames the inverse problem in terms of the global conservation of

volume in multiple tracer (temperature and salinity) coordinates. This approach has been extended to a regional context with

the Regional Thermohaline Inverse Method (Mackay et al., 2018). However, these methods have not been focused on inferring

air-sea exchanges (they are taken as boundary conditions) nor investigating long term changes.

Water mass based methods have been used in a number of studies focused on understanding variability, for example the75

seasonal cycle of water masses (Groeskamp et al., 2014a; Evans et al., 2014), interannual variability in the North Atlantic

(Evans et al., 2017; Josey et al., 2009), long term changes in salinity (Zika et al., 2015; Skliris et al., 2016) and temperature

(Sohail et al., 2021) and the ocean’s properties (Sohail et al., 2022; Zika et al., 2021). Here, we will build on these studies and

incorporate aspects of Green’s Functions-based methods to develop a general, yet relatively simple and intuitive water mass

based state estimation tool for the changing ocean, termed the Optimal Transformation Method (OTM) .80

In Section 2 we build up the OTM state estimation framework in the most general terms. In Section 3 we discuss a specific

implementation of OTM and test this implementation using numerical model data. In Section 4 we present the state estimates

and sensitivity tests. In Section 5 we discuss the utility of the framework and conclude.

2 Optimal Transformation Method

2.1 Prelude85

Consider a fluid with a set of conservative tracers C = [A,B, ...]T , where A(x, t) is a scalar describing the concentration of the

first tracer in space (x) and time (t), B(x, t) the concentration of the second and so on. By conservative, we mean that, in the

absence of explicit sources and sinks of tracer substance, a parcel of fluid following fluid motion will retain its concentration

unless it is irreversibly mixed with other fluid parcels. Furthermore, when a fluid parcel of mass m1 with concentration C1

mixes with a fluid parcel of mass m2 with concentration C2, the resulting fluid parcel has mass m = m1 + m2 and tracer90

concentration
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Cmix =
m1C1 + m2C2

m1 + m2
. (1)

For the case of only one tracer variable, any fluid parcel with concentration Cmix can be formed from a linear combination

of 2 other fluid parcels with concentrations C1 and C2 so long as C1 ≤ Cmix ≤ C2.

We now consider a description of many water masses and many tracers. We define an early set of water masses describing95

an early period of time being converted into a late set of water masses some period of time ∆t later. Let there be a set of N

early water masses with tracer concentrations {C0,1, C0,2, ...,C0,N} and N late water masses with {C1,1, C1,2, ...,C1,N}. In

both cases the first subscript denotes the point in time (early = 0; late = 1) and the second denotes the index of the water mass

corresponding to that state. To make the mathematics as simple as possible in this Section, each water mass has the same mass,

m, in the early and late states. We will relax this constraint in the practical implementation of the method (Section 3.3).100

If the system is closed, the late water masses are constituted from the early water masses. That is, there is some ‘transport’

matrix, whose entries gij represent the mass fraction from the ith early water mass used to create the jth late water mass.

Applying mass conservation we have

1 =
N∑

i=1

gij and 1 =
N∑

j=1

gij . (2)

In essence, the inverse methods we will describe aim to constrain gij given knowledge of C0 and C1. In Zika et al. (2021),105

we used an Earth Mover’s Distance (EMD) algorithm to solve for gij by minimizing the following cost function

[Minimum transformation cost] =
N∑

i=1

N∑

j=1

gijd(C0,i,C1,j) (3)

where d(C0,i,C1,j) is a metric describing the ‘distance’ in tracer space between the ith early water mass and the jth late

water mass. The EMD algorithm essentially minimises the necessary transformation based on this ‘distance’. This minimisation

was applied to ocean change where water masses were described by their mass, conservative temperature and absolute salinity.110

These solutions helped understand how much of the observed change in the geographical distribution of heat in the ocean

implied a change in the ocean’s underlying water mass distribution (e.g. due to changes in sources and sinks of tracer or

mixing) and how much could be explained by simply re-arranging sea water geographically without changing the underlying

distribution (Evans et al., 2014; Zika et al., 2021). However, the EMD algorithm is unable to distinguish between the relative

contribution of air-sea fluxes and mixing to changes in ocean heat and salt content. We now consider an inverse framework115

where the influence of sources and sinks, circulation and mixing are diagnosed separately, which forms the basis of OTM.

2.2 Mixing driven transformation

Equation (1) describes a situation where two water masses are mixed to form another water mass. More generally, late water

masses can be made from a range of fractional contributions from the early water masses. If changes in tracer properties were

4

https://doi.org/10.5194/egusphere-2023-1220
Preprint. Discussion started: 10 July 2023
c© Author(s) 2023. CC BY 4.0 License.



solely due to fluid mixing, the tracer concentrations of the late water masses would be the mass weighted mean of the early.120

That is,

C1,j =
N∑

i=1

gijC0,i. (4)

The idea that the properties of the interior ocean water masses are linear combinations of the properties of surface or

boundary water masses was exploited by Tomczak (1981) and subsequent authors such as Gebbie and Huybers (2010) to

describe the origins of oceanographic water masses. Unlike traditional water mass analysis, we consider the formation of new125

water masses from old water masses, rather than deep water masses from surface water masses and the influence of sources

and sinks of tracer at the sea surface.

2.3 Sources and sinks of tracer

The ocean is not a closed system. Heat and tracer substances are exchanged at the sea surface and interior sources and sinks of

tracer exist due to a range of biological, chemical and physical processes. We will now incorporate such sources and sinks.130

The fraction of our ith early water mass which is transported to the jth late water mass can be subjected to a source

or sink of tracer on its route from one to the other. We represent this source as an implied change in tracer concentrations

Qij . In the absence of mixing, the early water masses would simply be the late water masses translated in tracer space by

Qij = C1,j −C0,i. Hence, the gij field inferred using the Earth Mover’s Distance approach (3) can be interpreted as the

necessary sources/sinks needed to effect the water mass changes in the limit of no mixing.135

We combine (4) and Qij above to describe the combined effect of mixing and tracer sources on transformation such that

C1,j =
N∑

i=1

gij (C0,i +Qij) . (5)

This provides a complete description of water mass change: the late water masses (C1,j) are formed as the linear combination

of fractions (gij) of the early water masses (C0,i) modified on route by sources and sinks (Qij).

If we knew the transport and sources/sinks we could use (5) to predict the early and late states. In our case, however, we140

have estimates of both the early and late states and aim to solve for both the transport and the sources/sinks.

2.4 Solving for the transport matrix and source/sink adjustments

Of the range of inverse modelling strategies possible, we consider the case where we have reasonable confidence in our

observational estimates of C1,j and C0,i, prior estimates of Qij (with much lower confidence) and no prior estimates of gij .

We separate the sources and sinks of tracers into a ‘prior’ estimate and an ‘adjustment’ such that Qij = Qprior
ij +Qadjust

ij145

and (5) becomes

C1,j =
N∑

i=1

gij

(
C0,i +Qprior

ij

)
+

N∑

i=1

gijQ
adjust
ij . (6)
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We aim to derive a solution for gij such that Qij is as ‘close’ as possible to Qprior
ij (i.e., the air-sea flux adjustment, Qadjust

ij

is as small as possible). We therefore use the following cost function:

[Non-mixing cost] =
N∑

j=1

∣∣∣∣∣

∣∣∣∣∣wj

(
N∑

i=1

gij

(
C0,i +Qprior

ij

)
−C1,j

)∣∣∣∣∣

∣∣∣∣∣

2

, (7)150

where wj is a relevant weighting. The minimisation of the cost (7) combined with constraints (2) and (5) is an inverse problem

(hereafter ‘the inverse problem’), or more specifically, a linear program for which gij can be solved for using constrained linear

optimisation tools.

Solving for gij then leads to an estimate of the total source/sink of tracer experienced in transit to the late water mass j via

N∑

i=1

gijQij = C1,j −
N∑

i=1

gijC0,i. (8)155

The Optimal Transformation Method above is similar to a range of previous water mass based inverse analyses such as

(Evans et al., 2014; Groeskamp et al., 2014b; Mackay et al., 2018) in that they attempt to solve for a transformation rate, given

existing data for the late and early water masses and tracer sources and sinks.

In Section (3) we discuss the specific practical considerations of our data inputs, the definition of weights (wj) and the

numerical solution. First though, we discuss some general considerations of the choice of weights and additional constraints.160

2.5 Consideration of weights

Solving (7) without the weight function (wj = 1) would yield a cost function whereby sources and sinks within all water mass

are penalised equally, regardless of their geographical location.

The purpose of wj is to favour solutions where the source and sink adjustments are more likely. One case where this is

apparent is for tracers with little or no interior source or sink such as conservative temperature (essentially a tracer of heat),165

salinity (a tracer of fresh water) and anthropogenic tracers such as chlorofluorocarbons. For such tracers, it may make sense to

adjust the sources and sinks as little as possible in a per unit area sense. In this case, it would be sensible to incorporate the

inverse of the outcrop area of water masses into the weights.

Furthermore, the weight wj can be different for different properties. It is sensible for wj to take into account the relative

effect of Qadjust
ij on different properties in the cost function. For instance, the user may want to penalise a source of salt which170

leads to a 1g/kg change in salinity more than a source of heat leading to a 1K change in temperature.

2.6 Additional constraints

We have so far discussed the general case where N late water masses are transformed into N early water masses. Since gij

can be nonzero for all i and j, water can be transported from any water mass on the globe to any other. Since some of these

transports will be implausible it is appropriate to place constraints and/or costs on certain parts of the transport matrix, gij .175

6

https://doi.org/10.5194/egusphere-2023-1220
Preprint. Discussion started: 10 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Here, a range of options are possible, for example a ‘speed limit’ could be defined permitting water to only travel a certain

maximum distance over the time period ∆t. More sophisticated connectivity constraints could be imposed based on vertical

and horizontal and/or isopycnal and diapycnal excursions and integrated constraints could be imposed based on energetic

considerations. The inverse method described is flexible and allows for such additional constraints to be readily added.

2.7 Toy examples180

To help explain and develop an intuition for how the Optimal Transformation Method works and is solved, here we discuss

a number of toy examples. To make the examples as simple as possible, while still allowing for a range of behaviour, only 3

water masses with two conservative tracers: salinity, S (in grams per kilogram) and temperature, T (in degrees Celsius) are

considered.

The toy examples below are illustrated in figures 1 (for examples 1 and 2) and 2 (for examples 3,4 and 5).185

2.7.1 Example 1: Pure mixing

When there is no prior information given regarding the sources and sinks of tracer (Qprior
ij = 0), optimisation of the inverse

problem is achieved first by mixing water masses together, then an adjustment is applied to complete the picture.

Three water masses form a triangle in T −S space , initially with C0,1 = [0,34.6], C0,2 = [4,35], C0,3 = [0,35.4] and at a

later time with C1,1 = [1,34.9], C1,2=[2,35], C1,3 = [1,35.1]. In this case the triangle contracts over time to form a smaller190

triangle. Equations (5) and (2) are satisfied for Qij = 0 with gij = 0.5 when i = j and gij = 0.25 otherwise. Here the triangle

is contracted by mixing the water masses together.

2.7.2 Example 2: Pure sources and sinks

Now consider the case where C0,1 = [1,34.9],C0,2 = [2,35], C0,3 = [1,35.1] and C1,1 = [0,34.6], C1,2 = [4,35], C1,3 = [0,35.4].

Here, the triangle expands. Intuitively this cannot be achieved by mixing, which is a convergent process in T −S space. Indeed195

(5) could be satisfied with Qij = 0 but only by violating (2) (effectively the water masses would need to be ‘unmixed’). With

Qprior
ij = 0, a minimum cost (7) is found with gij = 1 when i = j and gij = 0 otherwise. So, the change in water masses is

achieved not by mixing the water masses, but instead by translating the corners of the triangle outward via adjustment to the

sources and sinks (
∑N

i=1 gijQ
adjust
ij ).

2.7.3 Example 3: Sources and mixing200

Consider now an example where the three initial water masses do not change between the early and late periods with C0,1 =

[1,34.9] = C1,1, C0,2 = [2,35] = C1,2, C0,3 = [1,35.1] = C1,3. In this case the triangle appears not to move. Now consider

prior sources/sinks such that C0,1 +Qprior
1j =[0,34.6], C0,2 +Qprior

2j =[4,35], C0,3 +Qprior
3j =[0,35.4] for all j. A solution then

exists with no cost (7) and gij = 0.5 when i = j and gij = 0.25 otherwise (as in the pure mixing case). Here, the sources and
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Toy Examples

Geographical Space Phase Space

Example 1: Pure Mixing

Example 2: Pure Sources and Sinks

Figure 1. Illustration of the method using toy examples with 3 early (C0,i) and 3 late (C1,j) water masses in T −S coordinates. The water

masses occupy geographical regions given by Ω0,i. The fraction of the ith early water mass that arrives in the jth late water masses (gij)

is represented by the coloured circles, each representing 1/4 of the water mass it came from and 1/12 of the total mass in the system. For

example, in the pure mixing example, 2 blue circles from early water mass 1 (i.e. half of water mass 1) arrive in late water mass 1 so that

g11 = 0.5, while 1 blue circle from early water mass 1 arrives at late water mass 2 so that g12 = 0.25. Movements in T −S space induced

by sources and sinks are shown as arrows (black: priors, Qprior
ij ; grey: adjustments, Qadjust

ij ).
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Example 5: All Effects

Example 3: Sources and Mixing

Example 4: Sources, Mixing and Thermohaline Circulation

Figure 2. As in Figure 1 but for the remaining toy examples.
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sinks expand the triangle, and according to the transport matrix, the water masses are then mixed together, contracting the205

triangle to achieve an unchanged water mass distribution.

2.7.4 Example 4: Sources, mixing and thermohaline circulation

Consider once again a situation where the three initial water masses are the same for the early and late periods with C0,1 =

[1,34.9], C0,2 = [2,35], C0,3 = [1,35.1] and C1,1 = [1,34.9], C1,2 = [2,35], C1,3 = [1,35.1]. Now consider a prior source/sink

such that C0,1 +Qprior
1j = [0,35.4], C0,2 +Qprior

2j = [0,34.6], C0,3 +Qprior
3j = [4,35] for all j. Again a solution exists with210

no cost (7). However, rather than a symmetric matrix we have g12 = 0.5, g23 = 0.5, g31 = 0.5 and gij = 0.25 otherwise. Here

the transport matrix describes both a mixing and a clockwise circulation of the water masses in T −S space. The latter

circulation aspect is represented by the anti-symmetric part of the transport matrix. If the water masses are associated with

fixed geographical regions, the anti-symmetric part of the transport matrix represents the thermohaline component of the

geographical circulation (Zika et al., 2012).215

2.7.5 Example 5: All effects

Finally, consider the case where the water masses are changing in time with C0,1 = [1,34.9], C0,2 = [2,35], C0,3 = [1,35.1]

and C1,1 = [2,34.9], C1,2 = [3,35], C1,3 = [2,35.1]. Let us assume prior sources/sinks which describe a steady source vs

mixing cycle as in the previous example, but do not capture the overall warming, i.e., C0,1 +Qprior
1j = [0,35.4], C0,2 +Qprior

2j

= [0,34.6], C0,3 +Qprior
3j = [4,35] for all j. In this case no solution exists without a cost (7). With the weights constant,220

the lowest cost is achieved by the same transport matrix as in the sources, mixing and circulation example, with g12 = 0.5,

g23 = 0.5, g31 = 0.5 and gij = 0.25 otherwise. The remaining adjustment to each water mass (Qadjust
ij ) is then simply [0,1]

for all i and j. That is, the sources and sinks will satisfy (5) if 1◦C of warming is added to each water mass. In this example,

different weights could lead to differing distributions of the warming across the water masses and consequent changes in the

transport matrix.225

2.8 Summary of the Optimal Transformation Method

In this section we have outlined a water mass based state estimation framework, the Optimal Transformation Method. OTM re-

lates knowledge of changing ocean tracer distributions to transient ocean transport and mixing. We propose an inverse method,

based on this framework, to infer minimal adjustments to prior estimates of tracer sources and sinks.

In the following sections we will discuss one practical implementation of OTM and assess it using data from a historical230

climate model simulation.
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3 Data and implementation

3.1 Synthetic data from a historical climate simulation

In Section 2, a general implementation of OTM was presented for any set of tracers. In this work, we demonstrate an imple-

mentation of this framework by analysing changes in temperature and salinity (and their associated surface fluxes of heat and235

freshwater) in a climate model.

We analyse ocean conservative temperature (hereafter temperature or T ) and ocean absolute salinity (hereafter salinity or

S) from a historical simulation of the ACCESS-CM2 climate model, which forms part of the Australian submission to the

6th generation Climate Model Intercomparison Project (CMIP6). The Modular Ocean Model (MOM, version 5.1) is used as

the ocean component of the coupled ACCESS-CM2 model. We analyse the three-dimensional, monthly-averaged conservative240

temperature and practical salinity field from January 1979 to December 2014 (inclusive) in ACCESS-CM2. Surface fluxes,

Qi, are obtained from the surface heat and freshwater flux variables, (hfds and wfo respectively). Surface flux tendencies are

obtained by time-integrating the relevant flux variables over the period of interest, then taking a time-derivative over this period,

following Sohail et al. (2021, 2022). The early period covers the time period from January 1979 to December 1987, and the

late period covers the time period from January 2006 to December 2014, inclusive.245

Temperature and salinity exhibit a long-term climate drift in ACCESS-CM2 (further explored by Irving et al. (2020)).

Despite this long-term drift, the heat and freshwater budgets close in the model (that is, the globally-integrated cumulative

surface flux is equal to the ocean heat and freshwater content change). Provided the heat and freshwater budgets close, the

long-term drift in the ACCESS-CM2 model is immaterial for the purposes of validating the OTM state estimation framework

laid out in Section 2. Thus, we analyse the drifting historical simulation in this work. Further details on the model spin-up,250

forcing and drift are provided by Bi et al. (2020); Mackallah et al. (2022); Irving et al. (2020).

3.2 Definition of discrete water masses using Binary Space Partitioning

The global ocean’s temperature-salinity (T −S) distribution is an integrated measure of its hydrographic properties, displaying

the volume or mass of the ocean with a characteristic temperature and salinity range (figure 3).

Our OTM state estimation framework considers the transformation from a set of ‘early’ water masses to a set of ‘late’255

water masses in tracer and geographical space. We split the ocean into 9 basins (following Zika et al., 2021) - the polar

North Atlantic, subtropical North Atlantic, equatorial Atlantic, South Atlantic, Indian, South Pacific, Equatorial Pacific, North

Pacific and Southern Ocean. Only transport between adjacent ocean basins is permitted in the optimization problem, such that

gij = 0 between water masses in non-adjacent basins. Ideally, the discrete representation should be as fine as possible so as to

best describe our T −S distribution (i.e., as many discrete water masses as possible), while also considering the distributions260

representative of different geographical regions. However computational constraints limit the resolution and number of regions

possible. Here, we define the discrete water masses using Binary Space Partitioning (BSP), following Sohail et al. (2023).

The BSP algorithm recursively sub-divides the mass-weighted T −S distributions along the T- and S-axes n times, resulting

in 2n bins which all contain exactly the same mass. BSP represents an improvement over the quadtree coarsening algorithm
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Figure 3. Left: The global distribution of ocean volume in T−S space, averaged between January 1979 and December 2014, in the historical

simulation of the ACCESS-CM2 climate model. Right: Volume distribution change between the time-averaged ‘early’ and ‘late’ periods,

defined as January 1979 – December 1987 and January 2006 – December 2014 inclusive, respectively (since these data come from a Boussi-

nesq ocean model, mass and volume are proportional).

(as used by Zika et al., 2021) as it results in a predetermined number of bins which hold exactly the same volume. Note that the265

BSP coarsening presented here is a two-dimensional equivalent to the 1-dimensional tracer-percentile framework introduced by

Sohail et al. (2021, 2022). Further information on Binary Space Partitioning and its applications in oceanography is provided

in Sohail et al. (2023).

3.3 Implementation of the inverse model

We recursively subdivide the T−S distribution of the top 2000m of the global ocean in ACCESS-CM2 4 times to yield 24 = 16270

water mass classifications of equal volume. The T and S bounds of these 16 bins define the ‘early’ and ‘late’ water masses

which will be assessed in this analysis. We partition these 16 water masses in each of the 9 basins defined above over the

full ocean depth, thus producing 144 ‘early’ and 144 ‘late’ water masses. Each water mass has different tracer concentrations:

(C0,i = [T0,i,S0,i] and C1,j = [T1,j ,S1,j ]), and due to the splitting by region, a different mass (m1,i and m0,i). Figure 4 shows

the mean temperature and salinity of each of these water masses, as well as the volume V0 in each basin and each BSP bin275

(since these data come from a Boussinesq ocean model, mass and volume are proportional).
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Figure 4. Volume (colours) and mean T and S (white) in each bin across the 9 basins analysed in the ‘early’ period. In this analysis, each

point (shown here in white) is considered a water mass with volume corresponding to the colour bar.
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Each water mass has a corresponding ‘mask’, Ωi(x, t) defining its geographical location with time (Ωi = 1 within the water

mass and Ωi = 0 outside). The outcrop area of each water mass is then calculated via

Ai =
1

t1− t0

t1∫

t0

∫∫
Ωi(x,y,0, t)dxdydt (9)

where t0 and t1 are mid points of the early and late periods. The following hard constraints are placed on the entries of the280

transport matrix gij (note variable early and late masses m0,i and m1,i have been incorporated into the constraints below):

0 ≤ gij ≤ 1; (10)

m1,j =
N∑

i=1

m0,igij ; (11)

m0,i =
N∑

j=1

m1,jgij ; (12)

C1,jm1,j =
N∑

i=1

C0,im0,igij where Aj = 0; (13)285

gij = 0 if Ωi and Ωj are not in the same or adjacent regions. (14)

A transport matrix gij is then sought which minimises the following cost function:

[Cost function] =
N∑

j=1

∣∣∣∣∣

∣∣∣∣∣wj

(
N∑

i=1

m0,igij

(
C0,i +Qprior

ij

)
−m1,jC1,j

)∣∣∣∣∣

∣∣∣∣∣

2

(15)

with

wj =
1

Aj

[
1

std(T )
,

1
std(S)

]
. (16)290

Effectively, wj leads (7) to search for the smallest residual source/sink per unit outcrop area and normalises the impact of

temperature and salinity on the residuals relative their global standard deviations. The additional constraint on gij (13) ensures

that changes to water masses that do not outcrop are achieved purely by redistribution and mixing. In one of the cases we will

discuss below (where Qprior
i = 0 ), our optimiser does not find a feasible solution with this constraint. In this case, we set

Ai[Ai = 0] = min(Ai[Ai > 0]), which is the most permissive area constraint we can justify for the problem.295

We set the ‘prior’ change in tracer concentration driven by tracer sources and sinks to the same value for all of early water

masses i regardless of their path to the late water masses j (so Qprior
ij becomes Qprior

i ). We calculate this by integrating the

‘known’ model air-sea fluxes over the outcrop region of the early water mass and over the time interval between the early and

late periods such that:
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Qprior
i =

1
m0,i(t1− t0)

t1∫

t0

∫∫
Ωi(x,y,0, t)q(x,y, t)dxdydt (17)300

where q(x,y, t) = [hfds(x,y, t),−S0wfo(x,y, t)] + bias. bias is a bias we will introduce in some cases to see what effect

incorrect air-sea flux data has on the inverse solution.

Equations 10 to 15 define a conic linear optimisation problem. We solve this numerically with the Python based cvxpy

package, specifying the ‘MOSEK’ optimisation solver with default settings to obtain a transport matrix gij which satisfies the

constraints described over the time period of interest.305

4 Results

When a solution for gij is found by minimising (15), an adjustment to the tracer sources and sinks is implied in order to close

the tracer budgets. We diagnose this adjustment via:

Qadjust
j = C1,j −

1
m1,j

N∑

i=1

m0,igij

(
C0,i +Qprior

i

)
. (18)

Once the early water masses have been redistributed and mixed by gij , Qadjust
j is the remaining change in tracer concentra-310

tions required for these mixtures to match the late water mass concentrations, C1,j . We do not attribute different adjustments

to the different fractions of the early water masses that make up the late water masses, so that Qadjust
j is the same for all i.

The ‘inverse solution’ describing the evolution of ocean water masses is then the transport matrix gij and the implied total

sources and sinks of tracer given by Qprior +Qadjust. Since, in the case of heat and salt, we attribute the sources and sinks to

fluxes at the sea-surface, the adjustment term is converted into a flux per unit area and mapped onto geographical coordinates315

via:

qadjust(x,y, t) =
N∑

j=1

mj

Aj(t1− t0)
Qadjust

j Ωj(x,y,0, t). (19)

Above, the tracer source required to change water mass j by Qadjust
j is applied as a flux of tracer per unit area that is constant

in time and space over the outcrop region of water mass j. The known surface fluxes, Qprior
i , are mapped onto the finite water

masses obtained from the BSP coarsening (see figure 5). As the outcrop area of the water masses is much larger than the320

original model grid, the resulting remapped surface fluxes are smoother than the raw fields, as shown in figure 5.

In the remainder of this section we will discuss three applications of the inverse method with the same tracer data but

different priors for the tracer sources and sinks – Case 1: the true tracer sources and sinks from the numerical model; Case 2:

the true numerical model sources and sinks with a bias added globally; and Case 3: Prior sources and sinks set to zero globally.
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Figure 5. Time-averaged surface fluxes between the ‘early’ and ‘late’ periods in ACCESS-CM2, in the original model grid (q(x,y, t); left

column) and remapped onto the 2n × 9 water masses as defined by BSP in T-S space (Qprior
i ; right column). Note that the surface outcrop

location of these watermasses, averaged over the entire ‘early’ period, is used for the remapping.

4.1 Case 1: ‘True’ source and sink priors325

When the true model fluxes are used for Qprior (bias = 0), the inverse method is able to find a solution for gij which matches

these priors with little Qadjust necessary (Fig 6). Quantitatively, the standard deviation of the true fluxes (STD(qprior); the

signal) is [17.6 W m−2,1.57 mm/day] while the standard deviations of the adjustment (STD(qadjust) the error) is [1.4 ×10−2

W m−2, 9.1× 10−4 mm/day], yielding a signal to error ratio of order 2000.

From the inferred transport matrix gij , the region-to-region heat and freshwater transport is determined using330

[Heat transport] = Cpρ0

N∑

i=1

m0,i(T0,i +Qprior
i )gijδij ; (20)

[Fresh water transport] =−ρ0/S0

N∑

i=1

m0,i(S0,i +Qprior
i )gijδij . (21)

where Cp is the heat capacity of sea water (3992.1 Jkg−1K−1), ρ0 is a reference density (1035 kgm−3) and S0 is a reference

salinity (35 g/kg). Above, δij = 1 if water mass i is upstream of the region-to-region boundary and j is downstream, δij =−1

if j is upstream and i is downstream and δij = 0 otherwise. We only consider region-to-region boundaries where the total mass335

transport is zero.

We compare the heat transport in ACCESS-CM2, inferred directly from model output, to our inverse estimate (based on 20)

and the two match to within a standard deviation across the region-to-region boundaries of 17 TW in the Indo-Pacific and 16
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Figure 6. Time-averaged surface fluxes between the ‘early’ and ‘late’ periods in ACCESS-CM2, remapped onto the 2n × 9 water masses as

defined by BSP in T-S space (Qprior
i ; left column), and the inferred surface flux adjustment based on changes to the underlying ocean T −S

distribution (Qadjust
j ; right column). Note that the surface outcrop location of the water masses, averaged over the entire ‘early’ period, is

used for the remapping.

TW in the Atlantic. Comparing the explicitly calculated fresh water transport in ACCESS-CM2 to our inverse estimate, we

that the two match to within a standard deviation of 0.14 Sv in the Indo-Pacific, and 0.013 Sv in the Atlantic (Figure 7).340

It is reassuring that, when applied to consistent tracer source and tracer change data, an accurate solution is confirmed. We

now consider what happens when the prior source estimates contain biases.

4.2 Case 2: Biased source and sink priors

We add a constant offset to the air-sea fluxes of 5 W/m2 for heat and 5 mm/day for fresh water over the entire data set (Fig.8). We

then use the biased air-sea fluxes to determine Qprior and feed this into our inverse model. The inverse model finds a solution345

for gij and a Qadjust, via (18), opposing the bias to within a standard deviation of 2.9× 10−3 mm/day and 5.1× 10−2 W/m2.

The implied region-to-region heat transports of the inverse model with biased sources and sinks are virtually indistinguishable

from the case without a bias, with a standard deviation that is within 1× 10−2 of the values reported for Case 1 (Fig.7).

This suggests the inverse model could be a useful tool to find a consistent, and potentially more realistic solution, in the

presence of biased estimates of air-sea fluxes.350

Finally, we consider what the inverse method yields when we ask it to estimate the sources and sinks with priors set to zero.
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Figure 7. Meridional a) heat transport and b) freshwater transport inferred from the transport matrix, gij (dots), and from the surface fluxes

and ocean heat/freshwater content change in the ACCESS-CM2 model (lines) in Case 1.

4.3 Case 3: Zero source and sink priors

Cases 1 and 2 mirror toy examples 3 and 4 from Section 2, respectively. There, Qprior effectively moved the water masses from

their initial state to some intermediate state in tracer coordinates and then gij moved them as close as possible to their final

state, with Qadjust providing the final adjustment. In our final case, we see how the inverse model responds to zero source/sink355

information, as in toy examples 1 and 2.

We run the inverse model, as in cases 1 and 2, but for Qprior = 0. The Qadjust patterns represent the smallest necessary heat

and fresh water fluxes that can explain the model’s water mass changes in conjunction with redistribution and mixing achieved

by gij . Since the model is describing historical climate change, increases in ocean heat content and any increase in the variance

of of ocean salinity can not be described by gij and are captured in Qadjust.360

The resulting patterns of adjustment heat flux are approximately uniform across all oceans, except for polar regions. In

the inverse model solution, basin-scale anomalous warming/cooling patterns can be explained by redistribution via gij . Only
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Figure 8. Constant offset added uniformly to ocean surface fluxes (bias; left column), the inferred adjustment based on changes to the

underlying ocean T −S distribution (Qadjust
j ; middle column), and the sum of the two (right column). Note that the surface outcrop location

of the water masses, averaged over the entire ‘early’ period, is used for the remapping.

a small, near-uniform warming is required to complete the picture. The patterns of adjustment fresh water flux show net

precipitation into relatively fresh regions of the globe such as the tropical pacific and sub-polar oceans and net evaporation

over relatively saline regions such as the sub-tropical oceans and the majority of the Atlantic Basin consistent with the ‘wet365

gets wetter, dry gets drier’ paradigm (Durack et al., 2012; Skliris et al., 2016).

The true air-sea fluxes warm the low latitudes and cool the high latitudes far more and this is balanced largely by heat

transport and mixing represented by gij . Practically, a solution can always be added in which sources and sinks are balanced

by the transport matrix while still satisfying the constraints (a ‘homogeneous solution’ in the language of differential equations)

but in the case where Qprior = 0, adding such solutions increases the cost function. These results suggest that, without adequate370

priors, the inverse method cannot by itself accurately determine the correct total tracer sources and sinks.

Figure 10 summarises the results of the three cases at the basin scale. It shows the net Qprior +bias (if any), Qadjust,

divergence of tracer transport described by gij , and the change in amount of tracer with time in each region. Case 1 describes

the true budget for the time period considered with the change with time and a small residual of the larger source/sink and

divergence terms. Case 2 shows how a small adjustment to the sources and sinks compensates for an imposed error. In Case 3,375

the implied net Q and tracer transport divergence are an order of magnitude smaller than in Cases 1 at the basin scale, since

they are only required to describe the change rather than the large mean balances of sources/sinks and transport/mixing.
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Figure 9. Surface flux adjustment given no prior source/sink information (Qprior
i = 0; left column), and the inferred surface flux adjustment

based on changes to the underlying ocean T −S distribution (Qadjust
j ; right column). Note that the surface outcrop location of the water

masses, averaged over the entire ‘early’ period, is used for the remapping.

5 Discussion

Our assessment of the Optimal Transformation Method state estimation framework has not been exhaustive. Our aim has been

to describe the framework generally. In any future implementation, a number of choices can be made by the user, including:380

1. The way water masses are defined both in space and time;

2. The way constraints are placed on the transport matrix gij and priors are introduced; and

3. How adjustments of tracer sources/sinks and other variables impact the cost function.

For choice 1, we used binary space partitioning to objectively divide tracer space into discrete water masses. However, we

used conventional definitions of ocean basins to distinguish the water masses. OTM is not tied to either choice and alternative385

objective (e.g. machine learning based classification) and/or user-driven approaches (e.g. traditional water mass definitions)

can be used. All that is required is that a set of water masses with tracer concentrations for two time periods (or a sequence of

time periods) be defined and constraints be placed on their connectivity (gij).

For choice 2, we elected to give no prior information about the transport matrix (gij). Priors for this matrix or stricter

constraints on it could be given based on numerical models or observations at key regional boundaries (such as the RAPID-390

MOCHA transect in the North Atlantic) and in key ocean gateways. Note, however, that gij does not necessarily represent the

conventional transport measured at a section. To illustrate this, consider a water mass in the subtropical North Atlantic with
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Figure 10. Terms in the heat and freshwater budgets for the three cases explored in this study. In this framework, Heat/Freshwater Content

Change = Qadj + Qprior + bias+ Heat/Freshwater Transport.

temperature T0,i=20◦C that is heated due to some air-sea flux with an implied warming over a 40 year period of Qi = 80◦C. Let

us assume the state estimate tells us that 1% of this water mass travels northward into the sub-polar North Atlantic and mixes

with 99% of the water contained in water mass j (i.e. gij = 0.01 and gjj = 0.99). Mathematically, the water can be viewed as395

crossing the regional boundary at a temperature of T0,i + Qi = 100◦C, as used in the calculation for the heat transport (20).

A more plausible physical interpretation is that water from water mass j is continually mixing with with water mass i. The

state estimate does not describe where or when this mixing occurs, only that it occurred at some point between the early and

late period. Hence, further work is required to determine how information about ocean overturning circulation can be used to

constrain state estimates and likewise how the state estimate can inform us of the circulation.400

For choice 3, in applications to observation based data, choices should be guided by the uncertainty in the underlying data.

For example, we minimised the sources and sinks in a per unit area sense. It could be that particular regions and/or components

of the sources and sinks (e.g. precipitation) are more uncertain than others. These distinct uncertainties can be accounted for

through the weight vector, wj .
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6 Conclusions405

We have presented a state estimation framework based on water mass theory, termed the Optimal Transformation Method.

The framework enables the framing of inverse problems where ocean transport and tracer sources and sinks are optimally

adjusted to define a self-consistent description of ocean change. We have used temperature and salinity data from a numerical

climate model responding to historical natural and anthropogenic forcing over the past half century to test one application of

the framework.410

The Optimal Transformation Method draws on concepts in water mass transformation, water mass analysis and ocean tracer

transport theory. What results is a set of equations describing how a discretised description of the ocean’s multi-variate water

mass distribution varies in time. These equations, combined with a transparent set of physically based constraints, allows for

the definition of an inverse problem where a solution can be optimised based on deviations from priors.

We implemented an inverse method where the change in ocean state was known, ocean transport is unknown and deviations415

from prior estimates of tracer sources and sinks were minimised. When given ‘true’ heat and fresh water fluxes, the inverse

solution found a state with near zero deviation from those priors. Likewise, when given fluxes with a constant bias added, the

method reduced the error from 27.7% to 1.0% for heat flux and from 29.0% to 1.1% for fresh water flux.

The methods presented may be a useful complement to existing state estimation approaches, having the advantage of being

relatively simple (for example, when compared to numerical ocean models and ocean data assimilation platforms) and compu-420

tationally cost efficient. In particular, the Optimal Transformation Method has shown promise for finding corrections to air-sea

fluxes of heat and fresh water so that they plausibly describe the changing ocean state.
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